Latest News

Clues beginning to emerge on asymtomatic SARS-CoV-2 infection
Back in November of 2020, during the first wave of the COVID-19 pandemic, I was teaching an in-person microbiology laboratory. One of my students had just been home to see his parents, and they all c…
Read more
Could there maybe be better uses of genetics and probiotics?
Professor Meng Dong and his laboratory have created a probiotic that can metabolize alcohol quickly and maybe prevent some of the adverse effects of alcohol consumption. The scientists cloned a highl…
Read more
ChatGPT is not the end of essays in education
The takeover of AI is upon us! AI can now take all our jobs, is the click-bait premise you hear from the news. While I cannot predict the future, I am dubious that AI will play such a dubious role in…
Read more
Fighting infections with infections
Multi-drug-resistant bacterial infections are becoming more of an issue, with 1.2 million people dying of previously treatable bacterial infections. Scientists are frantically searching for new metho…
Read more
A tale of two colleges
COVID-19 at the University of Wisconsin this fall has been pretty much a non-issue. While we are wearing masks, full in-person teaching is happening on campus. Bars, restaurants, and all other busine…
Read more

News

A Community of Microbes Help Protect Plants from Disease.


 

The immune system of animals is extremely complex and helps defend against a plethora of diseases. Plants, on the other hand, are not as lucky when it comes to defense. Plants have a few systems to stop chemicals and diseases from moving in, but overall are very susceptible to infection. Scientists from the U.S. Department of Energy’s Lawrence Berkeley National Laboratory have found that many plants are relying on microbes in the soil to defend themselves against diseases and pathogens.

Past studies had shown that one or two microbes were used to protect against pathogens and some fungal infections in plants, but the scientists at Berkeley Lab found that there are actually many more microbes that form a complex network to protect sugar beets (the plant model used). There were many microbes in the soil of the sugar beets, so the scientists used a chip (PhyloChip) that could detect the presence of tens of thousands of microbes in the soil without the need to culture them. Soil samples from the beets were modified to show six different levels of disease suppression and were analyzed with the PhyloChip. Though there were thousands of bacteria present, 17 species were in great abundance. Some bacteria in this group of 17 had not been found to have a disease suppressing ability, but were shown to work synergistically with other bacteria that did such as the known fungal fighter Psuedomonas.

This study showed that plant immunity is far more complex than it was previously thought to be; instead of one or two microbes protecting plants a community of microbes work together in a relationship that is beneficial to all parties involved. While the microbes help protect the plants, the plants in turn supply energy to the microbes in the form of carbon. This information can be used in the future to understand plant immunity better which can hopefully help improve crop quality and output